941 resultados para ABC transporters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of multidrug resistance (MDR) is a major deterrent in the effective treatment of metastatic cancers by chemotherapy. Even though MDR and cancer invasiveness have been correlated, the molecular basis of this link remains obscure. We show here that treatment with chemotherapeutic drugs increases the expression of several ATP binding cassette transporters (ABC transporters) associated with MDR, as well as epithelial-mesenchymal transition (EMT) markers, selectively in invasive breast cancer cells, but not in immortalized or non-invasive cells. Interestingly, the mere induction of an EMT in immortalized and non-invasive cell lines increased their expression of ABC transporters, migration, invasion, and drug resistance. Conversely, reversal of EMT in invasive cells by downregulating EMT-inducing transcription factors reduced their expression of ABC transporters, invasion, and rendered them more chemosensitive. Mechanistically, we demonstrate that the promoters of ABC transporters carry several binding sites for EMT-inducing transcription factors, and overexpression of Twist, Snail, and FOXC2 increases the promoter activity of ABC transporters. Furthermore, chromatin immunoprecipitation studies revealed that Twist binds directly to the E-box elements of ABC transporters. Thus, our study identifies EMT inducers as novel regulators of ABC transporters, thereby providing molecular insights into the long-standing association between invasiveness and MDR. Targeting EMT transcription factors could hence serve as novel strategies to curb both metastasis and the associated drug resistance. Cell Death and Disease (2011) 2, e179; doi:10.1038/cddis.2011.61; published online 7 July 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Bioquímica pelo Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP-binding cassette transporters from several rhizobia and Salmonella enterica serovar Typhimurium, but not secondarily coupled systems, were inhibited by high concentrations (100 to 500 mM) of various osmolytes, an effect reversed by the removal of the osmolyte. ABC systems were also inactivated in isolated pea bacteroids, probably due to the obligatory use of high-osmolarity isolation media. Measurement of nutrient cycling in isolated pea bacteroids is impeded by this effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP-binding cassette (ABC) transporters play a pivotal role in human physiology, and mutations in these genes often result in severe hereditary diseases. ABC transporters are expressed in the bovine mammary gland but their physiological role in this organ remains elusive. Based on findings in the context of human disorders we speculated that candidate ABC transporters are implicated in lipid and cholesterol transport in the mammary gland. Therefore we investigated the expression pattern of selected genes that are associated with sterol transport in lactating and nonlactating mammary glands of dairy cows. mRNA levels from mammary gland biopsies taken during lactation and in the first and second week of the dry period were analysed using quantitative PCR. Five ABC transporter genes, namely ABCA1, ABCA7, ABCG1, ABCG2 and ABCG5, their regulating genes LXRalpha, PPARgamma, SREBP1 and the milk proteins lactoferrin and alpha-lactalbumin were assessed. A significantly enhanced expression in the dry period was observed for ABCA1 while a significant decrease of expression in this period was detected for ABCA7, ABCG2, SREBP1 and alpha-lactalbumin. ABCG1, ABCG5, LXRalpha, PPARgamma and lactoferrin expression was not altered between lactation and dry period. These results indicate that candidate ABC transporters involved in lipid and cholesterol transport show differential mRNA expression between lactation and the dry period. This may be due to physiological changes in the mammary gland such as immigration of macrophages or the accumulation of fat due to the loss of liquid in the involuting mammary gland. The current mRNA expression analysis of transporters in the mammary gland is the prerequisite for elucidating novel molecular mechanisms underlying cholesterol and lipid transfer into milk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a nontolerant plant to a large number of toxic compounds, Arabidopsis thaliana is a suitable model to study regulation of genes involved in response to heavy metals. Using a cDNA-microarray approach, we identified some ABC transporters that are differentially regulated after cadmium treatments, making them putative candidates for being involved in Cd sequestration and redistribution in plants. Regarding yeast and fission yeast, in which Cd is able to form complexes either with glutathione (GSH) or phytochelatins (PC) subsequently transported into vacuoles via ABC transporters, it is also very likely that some plant ABC transporters are able to transport GS2–Cd or PC–Cd complexes into subcellular compartments or outside of the cell. The characterization of such transporters is of great interest for developing molecular biology approaches in phytoremediation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up awide range of possibilities for the future study of their structure and function. © The Authors Journal compilation © 2014 Biochemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ATP binding cassette (ABC) and solute carrier (SLC) transporters are responsible for the majority of the transcellular movement of various substrates, including drugs, among epithelial cells. Despite the well characterized regulation of influx (SLC) and efflux (ABC) transporters by endogenous mediators, such as inflammatory cytokines, little is known about how changes in oxygen levels may affect expression of these transporters. In this study we showed that the expression of SLC22A4, SLC22A5, SLC22A1, SLC02B1, SLC10A2, ABCC2 and ABCC3 transporters is upregulated by hypoxia in HT29 colon carcinoma cells, but not in HepG2 hepatocarcinoma cells. Moreover, OCTN1 (SLC22A4), OCT1 (SLC22A1) and OATP-B (SLC02B1) transporter expression is also induced by inflammatory cytokines but in a smaller extent than in hypoxia. Furthermore our experiments indicate that there is no cross talk between HIF-1 and NF-κB pathways in HT-29 cells, but these two pathways act simultaneously activating common genes, such as, some SLC and ABC transporters. Our preliminary results from studies with an in vivo murine model of colitis, suggest that HIF-1is stabilized and OCTN1 is strongly induced during severe inflammation, which can be relevant for a recovery from the inflammatory process. We have also been interested in the distribution of HIF-1α variants among different ethnic groups as well as their contribution for cancer risk. Thus, we have demonstrated that there is an ethnicity-related variation in the frequency of the C1772T (P582S) single nucleotide polymorphism (SNP) in the HIF-1α gene. Furthermore, we performed a case-control study in a breast cancer population and our results suggest that there is no association between this SNP or the rare G1790A (A588T) SNP and the incidence of breast cancer. Taken together, the results obtained in this study contribute to a better knowledge of drug influx and efflux during hypoxia and inflammation as well as to the understanding of the pharmacogenetic variability of the HIF-1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work has as objective to contribute for the elucidation of the mechanism associated with Pb detoxification, using the yeast Saccharomyces cerevisiae as a model organism. The deletion of GTT1 or GTT2 genes, coding for functional glutathione transferases (GST) enzymes in S. cerevisiae, caused an increased susceptibility to high Pb concentrations (500-1000 μmol L(-1)). These results suggest that the formation of glutathione-Pb conjugate (GS-Pb), dependent of GSTs, is important in Pb detoxification. The involvement of ATP-binding cassette (ABC) vacuolar transporters, belonging to class C subfamily (ABCC) in vacuolar compartmentalization of Pb, was evaluated. For this purpose, mutant strains disrupted in YCF1, VMR1, YBT1 or BPT 1 genes were used. All mutants tested, without vacuolar ABCC transporters, presented an increased sensitivity to 500-1000 μmol L(-1) Pb comparative to wild-type strain. Taken together, the obtained results suggest that Pb detoxification, by vacuolar compartmentalization, can occur as a result of the concerted action of GSTs and vacuolar ABCC transporters. Pb is conjugated with glutathione, catalysed by glutathione transferases and followed to the transport of GS-Pb conjugate to the vacuole by ABCC transporters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multidrug resistance (MDR) is one of the most common complex phenomenons exhibited by cancer cells. It is a very common property of melanoma postchemotherapy. MDR transporters, ATP binding cassette (ABC) transporters, play a critical role in conferring this property to melanoma cells. miRNA are post-transcriptional regulators that regulate the expression of these ABC transporters. Targeting these miRNA, in turn targeting ABC transporters with the help of nanodelivery systems to overcome drug resistance, is the primary focus for attaining successful treatment methods for drug-resistant melanoma. These delivery systems are endocytosed by the cancer cells and do not require ABC transporters for their delivery, being a promising therapeutic measure for melanoma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To identify genes specifically or predominantly expressed in the stigmas/styles and to establish their possible function in the reproductive process of plants, a tobacco stigma/style cDNA library was constructed and differentially screened, resulting in the isolation of several cDNA clones. The molecular characterization of one of these clones is described here. After sequencing the cDNA and the isolated genomic clone, it was determined that the corresponding gene encodes a protein containing an ATP-binding cassette, characteristic of ABC transporters. This gene, designated as NtWBC1 (Nicotiana tabacum ABC transporter of the White-Brown Complex subfamily), encodes a protein that contains the typical structure of the 'half-transporters' of the White subfamily. To establish the spatial expression pattern of the NtWBC1 gene, northern blot and real-time RT-PCR analyses with total RNA from roots, stems, leaves, sepals, petals, stamens, stigmas/styles, ovaries, and seeds were performed. The result revealed a transcript of 2.5 kb present at high levels in stigmas and styles and a smaller transcript (2.3 kb) present at a lower level in stamens. NtWBC1 expression is developmentally regulated in stigmas/styles, with mRNA accumulation increasing toward anthesis. In situ hybridization experiments demonstrated that NtWBC1 is expressed in the stigmatic secretory zone and in anthers, at the stomium region and at the vascular bundle. NtWBC1 is the first ABC transporter gene with specific expression in plant reproductive organs to be identified and its expression pattern suggests important role(s) in the reproductive process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

L’insorgenza di fenomeni coinvolti nello sviluppo della farmacoresistenza costituisce al momento la principale causa di mancata risposta al trattamento chemioterapico nell’osteosarcoma. Questo è in parte dovuto ad una sovraespressione di diversi trasportatori ABC nelle cellule tumorali che causano un aumento dell’efflusso extracellulare del chemioterapico e pertanto una ridotta risposta al trattamento farmacologico. L'oncogene C-MYC è coinvolto nella resistenza al metothrexate, alla doxorubicina e al cisplatino ed è un fattore prognostico avverso, se sovraespresso al momento della diagnosi, in pazienti affetti da osteosarcoma. C-MYC è in grado di regolare l'espressione di diversi trasportatori ABC, probabilmente coinvolti nella resistenza ai farmaci nell’osteosarcoma, e questo potrebbe spiegare l’impatto prognostico avverso dell’oncogene in questo tumore. L’espressione genica di C-MYC e di 16 trasportatori ABC, regolati da C-MYC e / o responsabili dell'efflusso di diversi chemioterapici, è stata valutata su due diverse casistiche cliniche e su un pannello di linee cellulari di osteosarcoma umano mediante real-time PCR. L'espressione della proteina è stata valutata per i 9 trasportatori ABC risultati più rilevanti.Infine l'efficacia in vitro di un inibitore, specifico per ABCB1 e ABCC1, è stata valutata su linee cellulari di osteosarcoma. ABCB1 e ABCC1 sono i trasportatori più espressi nelle linee cellulari di osteosarcoma. ABCB1 è sovraespresso al momento della diagnosi in circa il 40-45% dei pazienti affetti da osteosarcoma e si conferma essere un fattore prognostico avverso se sovraespresso al momento della diagnosi. Pertanto ABCB1 diventa il bersaglio di elezione per lo sviluppo di strategie terapeutiche alternative, nel trattamento dell’osteosarcoma, atte al superamento della farmacoresistenza. L’inibizione dell'attività di tale trasportatore causa un aumento della sensibilità al trattamento chemioterapico nelle linee cellulari di osteosarcoma farmacoresistenti, indicando questo approccio come una possibile strategia per superare il problema della mancata risposta al trattamento farmacologico nei pazienti con osteosarcoma che sovraesprimono ABCB1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Members of the ATP-binding cassette (ABC) transporters play a pivotal role in cellular lipid efflux. To identify candidate cholesterol transporters implicated in lipid homeostasis and mammary gland (MG) physiology, we compared expression and localization of ABCA1, ABCG1, and ABCA7 and their regulatory genes in mammary tissues of different species during the pregnancy-lactation cycle. Murine and bovine mammary glands (MGs) were investigated during different functional stages. The abundance of mRNAs was determined by quantitative RT-PCR. Furthermore, transporter proteins were localized in murine, bovine, and human MGs by immunohistochemistry. In the murine MG, ABCA1 mRNA abundance was elevated during nonlactating compared with lactating stages, whereas ABCA7 and ABCA1 mRNA profiles were not altered. In the bovine MG, ABCA1, ABCG1, and ABCA7 mRNAs abundances were increased during nonlactating stages compared with lactation. Furthermore, associations between mRNA levels of transporters and their regulatory genes LXRalpha, PPARgamma, and SREBPs were found. ABCA1, ABCG1, and ABCA7 proteins were localized in glandular MG epithelial cells (MEC) during lactation, whereas during nonlactating stages, depending on species, the proteins showed distinct localization patterns in MEC and adipocytes. Our results demonstrate that ABCA1, ABCG1, and ABCA7 are differentially expressed between lactation and nonlactating stages and in association with regulatory genes. Combined expression and localization data suggest that the selected cholesterol transporters are universal MG transporters involved in transport and storage of cholesterol and in lipid homeostasis of MEC. Because of the species-specific expression patterns of transporters in mammary tissue, mechanisms of cholesterol homeostasis seem to be differentially regulated between species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Screening, Identification and Preliminary Investigation of Target Transporters in Pregnancy Pathologies. INTRODUCTION: Pre-eclampsia (PE), intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM) are major sources of clinical morbidity and mortality in pregnant women worldwide. The mechanisms underlying these gestational diseases are complex and not yet fully understood, but one factor contributing to their development is impaired maternal-fetal nutrient transport. Therefore, we aimed to identify candidate membrane transporters involved in transplacental nutrient transfer associated with PE/IUGR or GDM. METHODS: Using in silico strategies, we analysed various gene expression data sets generated on different platforms focusing on solute carriers, ABC transporters and TRP channels in order to identify transporters that are differently expressed between patients and gestational age-matched controls. These bioinformatic analyses were combined with literature data to define a catalogue of target transporters that could be involved in the development of PE/IUGR or GDM. Transporters of interest were then analysed for gene expression using qRT-PCR in placental tissues of patients and controls. For validating the results on protein and functional level, we started to establish an in vitro assay using freshly isolated primary cytotrophoblast cells polarized on the Transwell® system. RESULTS: Using bioinformatics approaches, we initially identified 37 target membrane proteins which were mainly associated with the transport of amino acids, vitamins, and trace elements. At the current state of analysis, the amino acid transporters SLC7A7, SLC38A2, SLC38A5, and the thiamine transporter SLC19A3 showed significant differences in placental mRNA expression between controls and patients affected by PE and/or IUGR. Subsequent gene expression analysis in our in-house GDM placental tissue bank is still ongoing. CONCLUSIONS: Based on our in silico analyses, literature data and first follow-up in vitro validations, we were able to define potentially interesting candidate transporters implicated in PE/IUGR or GDM. To date, additional newly defined candidate targets are being analysed on mRNA level in PE/IUGR and GDM. Subsequent analyses on protein and functional level will reveal whether these targets could be of diagnostic or therapeutical interest in these pregnancy pathologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Membrane transporters are essential during pregnancy, being a core component of the exchange of nutrients, gases, and metabolic products between the mother and the developing fetus. Important compounds to be transported include vitamins and minerals, amino acids, glucose, as well as cholesterol. Cholesterol transport across the plasma membrane is mediated mainly by members of the ATP-binding cassette (ABC) transporter family. Cholesterol is present in every cell of the body, where it helps maintain the integrity of cell membranes and also plays an important role in cell signaling events. Cholesterol also acts as a precursor for the biosynthesis of steroids that include sex hormones, glucocorticoids, mineralcorticoids, as well as bile acids and oxysterols. Cholesterol transport is therefore crucial for a host of different physiological processes. The following chapter addresses the involvement and importance of ABC transporters in these different processes. The critical role that ABC transporters Play for a successful pregnancy outcome is highlighted by pathological processes that result malfunction of cholesterol transport during pregnancy. Avenues of future research are also described, which may help to further delineate the function and mechanism of action of ABC transporters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half ATP-binding cassette (ABC) transporters in the human peroxisome membrane. ALDP and PMP70 share sequence homology and both are implicated in genetic diseases. PXA1 and YKL741 are Saccharomyces cerevisiae genes that encode homologs of ALDP and PMP70. Pxa1p, a putative ortholog of ALDP, is involved in peroxisomal beta-oxidation of fatty acids while YKL741 is an open reading frame found by the yeast genome sequencing project. Here we designate YKL741 as PXA2 and show that its protein product, Pxa2p, like Pxa1p, is associated with peroxisomes but not required for their assembly. Yeast strains carrying gene disruption of PXA1, PXA2, or both have similar and, in the case of the latter, nonadditive phenotypes. We also find that the stability of Pxa1p, but not Pxa2p, is markedly reduced in the absence of the other. Finally, we find that Pxa1p and Pxa2p coimmuno-precipitate. These genetic and physical data suggest that Pxa1p and Pxa2p heterodimerize to form a complete peroxisomal ABC transporter involved in fatty acid beta-oxidation. This result predicts the presence of similar heterodimeric ABC transporters in the mammalian peroxisome membrane.